
GENERALIZED SPIN BASES FOR QUANTUM CHEMISTRY AND
QUANTUM INFORMATION

Maurice R. KIBLER
a Université de Lyon, F-69622, Lyon, France; b Université Lyon 1, Villeurbanne; c CNRS/IN2P3,
UMR5822, Institut de Physique Nucléaire de Lyon;
e-mail: m.kibler@ipnl.in2p3.fr

Received May 2, 2008
Accepted June 24, 2008

Published online November 28, 2008

Dedicated to Professor Rudolf Zahradník on the occasion of his 80th birthday.

Symmetry-adapted bases in quantum chemistry and bases adapted to quantum information
share a common characteristics: both of them are constructed from subspaces of the repre-
sentation space of the group SO(3) or its double group (i.e., spinor group) SU(2). We exploit
this fact for generating spin bases of relevance for quantum systems with cyclic symmetry
and equally well for quantum information and quantum computation. Our approach is
based on the use of generalized Pauli matrices arising from a polar decomposition of SU(2).
This approach leads to a complete solution for the construction of mutually unbiased bases
in the case where the dimension d of the considered Hilbert subspace is a prime number.
We also give the starting point for studying the case where d is the power of a prime num-
ber. A connection of this work to the unitary group U(d) and the Pauli group is briefly un-
derlined.
Keywords: Symmetry-adapted functions; Unitary bases; Generalized Pauli matrices; Unitary
groups; Pauli group; Quantum chemistry; Quantum information.

The notion of symmetry-adapted functions (or vectors) in physical chemis-
try and solid state physics goes back to the fifties1. The use of bases consist-
ing of such functions allows to simplify the calculation of matrix elements
of operators and to factorize the secular equation. Symmetry adaptation
generally requires two types of groups: the symmetry group for the
hamiltonian (often a finite group when dealing with molecules) and a
chain of classification groups for the operators and state vectors (often con-
tinuous groups like unitary groups2–4 and finite groups5–9). The interest in
symmetry-adapted bases (atomic orbitals, molecular orbitals, spin waves,
etc.) is well known in quantum chemistry. In particular, the spherical har-
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monics (e.g., in atomic spectroscopy) and cubic, tetragonal or trigonal har-
monics (e.g., in crystal-field theory and ligand-field theory10) are quite
familiar to the practitioner in theoretical chemistry and chemical physics.

The symmetry-adapted functions generally span bases for finite-
dimensional Hilbert spaces associated with reducible or irreducible repre-
sentations of a symmetry group. In the case of low dimensions, such spaces
are especially useful in the emerging fields of quantum information and
quantum computation (quantum state tomography and quantum cryptog-
raphy), two fields at the crossing of informatics, mathematics and quantum
physics. In fact, a Hilbert space of finite dimension d can describe a system
of qudits (qubits correspond to d = 2, qudits to d arbitrary). Qudits can be
realized from many physical systems. We undersee that qudits could be also
produced from chemical systems.

It is the object of this paper to construct bases which play an important
role for quantum systems with cyclic symmetry and for quantum measure-
ments and quantum information theory.

The organisation of this paper is as follows. Section 1 is devoted to an
alternative to the {j2,jz} quantization scheme of angular momentum. In
Section 2, this scheme is worked out for generating bases in a form adapted
to physical and chemical cyclic systems as well as to quantum information.
Section 3 deals with some examples in low dimensions. Finally, in Section 4
we develop a systematic construction of generalized Pauli matrices which
are at the origin of generalized spin bases. In the closing remarks, we men-
tion the interest of this work in the special unitary group and the Pauli
group.

Throughout the present work, we use the Dirac notation familiar in
quantum chemistry. As usual, A† stands for the hermitian conjugate of the
operator A. In addition, [A,B]– and [A,B]+ denote the commutator and the
anticommutator of A and B. Finally, i is the pure imaginary.

1. AN ALTERNATIVE TO THE {j2,jz} SCHEME

Let us consider a generalized angular momentum. We note j2 its square and
jz its z-component. The common eigenvectors of j2 and jz are denoted as
|j,m〉 . We know that11

j2|j,m〉 = j(j + 1)|j,m〉 , jz|j,m〉 = m|j,m〉 (1)

in a system of units where the rationalized Planck constant is equal to 1.
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For a fixed value of the quantum number j (with 2j ∈ �), we note ε(2j + 1)
the (2j + 1)-dimensional Hilbert space spanned by the basis

bs = {|j,m〉 : m = j, j – 1, ..., –j}. (2)

The basis bs is adapted to spherical symmetry (adapted to the group SO(3) if
j is an integer or the group SU(2) if j is a half of an odd integer). We take the
basis bs in an orthonormal form, i.e., the scalar product 〈 j,m|j,m′〉 satisfies

〈 j,m|j,m′〉 = δm,m′ (3)

for any value of m and m′.
In the applications to quantum chemistry, the generalized angular mo-

mentum can be an angular momentum, a spin angular momentum, a total
(spin + orbital) angular momentum, etc. The vectors |j,m〉 can have several
realizations. For instance, in the spectroscopy of 4fN lanthanide ions, we
have state vectors of type |J,M〉 ≡ |4fNτSLJM〉 in the Russell–Saunders cou-
pling (here j = J and m = M). This constitutes one of many possible realiza-
tions of the vectors |j,m〉 .

Besides the basis bs, another interesting basis can be obtained as follows.
Let us consider the operator

v j j j j q j m j mra
jr j m a

m j

j

= 〉 〈 + + 〉 〈−

=−

−

∑e i 2
1

1π | ,– , | | , , |( ) (4)

where we use the notation of Dirac for projectors. In Eq. (4), we have

r ∈ �, a = 0, 1, ..., 2j, q = exp
2

2 1
πi

j +






. (5)

The operator vra is an extension of the operator Ur defined in a previous
work12 (Ur = vr0). From Eq. (4), we can check that the action of vra on the
state |j,m〉 is given by

v j m q j m j jra m j
j m a

m j
jr| , ( ) | , | ,–,

( )
,〉 = − + 〉 + 〉−1 1 2δ δ πe i . (6)
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Furthermore, the matrix Vra of the operator vra on the basis bs reads

V

q

q

q
ra

a

a

ja

jr

=
















0 0 0

0 0 0

0 0 0

0 0 0

2

2

2

L

L

M M M L M

L

Le i π






(7)

where the lines and columns are labeled in the order |j,j〉 , |j,j–1〉 , ..., |j,–j〉 . It
can be shown that the operators j2 and vra commute so that the complete set
{j2,vra} of commuting operators constitutes an alternative to the set {j2,jz}.

We may ask what are the analogues of the vectors |j,m〉 in the scheme
{j2,vra}? Indeed, they are the common eigenvectors of the operators j2 and
vra. As a result, these eigenvectors are

| ; | ,( )( ) / ( )j ra
j

q j mj m j m a jmr j m

m j

j

α α〉 =
+

〉+ − + − + +

=−

1

2 1
1 2∑ (8)

for α = 0, 1, ..., 2j. More precisely, we have the eigenvalue equations

v j ra q j ra j j ra j j j rara
j a r| ; | ; , | ; ( )| ;( )α α α αα〉 = 〉 〉 = ++ − 2 1 〉 . (9)

For fixed j and a (2j ∈ �, a = 0, 1, ..., 2j), the basis

B j ra jra = 〉 ={| ; : , , ... , }α α 0 1 2 (10)

is an orthonormal basis since

〈 ′ 〉 = ′j ra j raα α δ α α; | ; , (11)

for any value of α and α′ . In the particular case where 2j + 1 is a prime inte-
ger, the overlap between the bases Bra and Brb is such that13

| ; | ; ( ), , ,〈 〉 = +
+

−j ra j rb
j

a b a bα β δ δ δα β
1

2 1
1 (12)

a property of considerable importance in quantum information. Note that
Eq. (12) is compatible with Eq. (11).
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2. A FORMULATION FOR d-DIMENSIONAL QUANTUM SYSTEMS

The parameter r is of interest for group-theoretical analyses but turns out to
be of no concern here. Therefore, we will restrict ourselves in the following
to the case r = 0. In addition, we shall adopt the notation

k j m k j m a j a d j= − 〉 = 〉 〉 = 〉 = +, | | , , | | ; ,α α 0 2 1 (13)

that is especially adapted to quantum information (the vectors |0〉 , |1〉 , ...,
|d – 1〉 are then called qudits, the case d = 2 corresponding to ordinary
qubits) and to cyclic chemical systems (for which |d〉 ≡ |0〉 , |d + 1〉 ≡ |1〉 , etc.).

The basis bs becomes

B k k dd = 〉 = −{| : , , ... , }0 1 1 (14)

known as the computational basis in quantum information theory. The ac-
tion of v0a on the basis Bd of ε(2j + 1) is described by

v k q ka
ka

0 1| |〉 = − 〉 (15)

where k – 1 should be understood modulo d (i.e., |–1〉 = |d –1〉). The vectors
|aα〉 of the orthonormal basis

B a da0 0 1 1= 〉 = −{| : , , ... , }α α (16)

can be written as

| |( )( ) / ( )a
d

q kd k k a k

k

d

α α〉 = 〉− − + − +

=

−

∑1 1 1 2 1

0

1

(17)

where α can take the values α = 0, 1, ..., d – 1. These vectors satisfy the
eigenvalue equation

v a q aa
d a

0
1 2| |( ) /α αα〉 = 〉− − (18)

that corresponds to a nondegenerate spectrum for the operator v0a.
All relations given in Section 1 up to this point are valid for d arbitrary.

In the special case where d is a prime integer, Eq. (12) yields

| | | ( ), , ,〈 〉 = + −a b
d

a b a bα β δ δ δα β
1

1 (19)
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a relation valid for any value of a, b, α and β in the set {0, 1, ..., d–1}. In
quantum information, two bases B0a and B0b satisfying Eq. (19) are said to
be mutually unbiased14. Such bases play an important role in quantum
cryptography and quantum state tomography. It is well known that a com-
plete set of d + 1 mutually unbiased bases can be found when d is a prime
integer or the power of a prime integer.

We continue with some typical examples.

3. SOME TYPICAL EXAMPLES

The Case d = 2

In this case, relevant for a spin j = 1/2 or for a qubit, we have q = –1 and
a, α ∈ {0,1}. The matrices of the operators v0a are

V V00 01

0 1

1 0

0 1

1 0
= 





=
−





, . (20)

We note in passing a connection (to be generalized below) with the Pauli
matrices since V00 = σx and V01 = –iσy. From Eqs (14), (16) and (17), the
bases B2, B00 and B01 are

B2 0 1: | , |〉 〉 (21)

B00 00
1

2
0 1 01

1

2
0 1: | (| | ), | ( | | )〉 = 〉 + 〉 〉 = − 〉 + 〉 (22)

B01 10
1

2
0 1 11

1

2
0 1: | ( | | ), | ( | | )〉 = 〉 + 〉 〉 = − 〉 + 〉i i (23)

which satisfy Eq. (19). Note that by using the spin-orbital

α β= 〉 = 〉 = − 〉 = 〉| , | , | , |
1
2

1
2

0
1
2

1
2

1 (24)
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(α for spin up and β for spin down) familiar to the quantum chemist,
Eqs (21)–(23) can be rewritten as

B2 : ,α β (25)

B00 00
1

2
01

1

2
: | ( ), | ( )〉 = + 〉 = − −α β α β (26)

B01 10
1

2
11

1

2
: | ( ), | ( )〉 = − 〉 = − +i i i iα β α β . (27)

In terms of eigenvectors of the matrices V0a, we must replace the vectors
|aα〉 by column vectors. This leads to

B2

1

0

0

1
: ,α β→ 





→ 





(28)

B00 00
1

2

1

1
01

1

2

1

1
: | , |〉 → 





〉 →
−







(29)

B01 10
1

2

1
11

1

2

1
: | , |〉 →

−






〉 → − 





i
i

i
i

. (30)

The Case d = 3

This case corresponds to a spin j = 1 or to a qutrit. Here, we have q =
exp (2πi/3) and a, α ∈ {0, 1, 2}. The matrices of the operators v0a are

V V

q

q V00 01
2

0 1 0

0 0 1

1 0 0

0 0

0 0

1 0 0

=














=














, , 02

20 0

0 0

1 0 0

=
















q

q . (31)
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The bases B3, B00 and B01, B02 are

B3 0 1 2: | , | , |〉 〉 〉 (32)

B q q00
200

1

3
0 1 2 01

1

3
0 1 2: | (| | | ), | ( | | | )〉 = 〉 + 〉 + 〉 〉 = 〉 + 〉 + 〉 (33)

| ( | | | )02
1

3
0 1 22〉 = 〉 + 〉 + 〉q q (34)

B q q q01
210

1

3
0 1 2 11

1

3
0 1 2: | ( | | | ), | (| | | )〉 = 〉 + 〉 + 〉 〉 = 〉 + 〉 + 〉 (35)

| ( | | | )12
1

3
0 1 22〉 = 〉 + 〉 + 〉q (36)

B q q q02
2 220

1

3
0 1 2 21

1

3
0 1 2: | ( | | | ), | ( | | | )〉 = 〉 + 〉 + 〉 〉 = 〉 + 〉 + 〉 (37)

| (| | | )22
1

3
0 1 2〉 = 〉 + 〉 + 〉q . (38)

They satisfy Eq. (19). In terms of column vectors, we have

B3 0

1

0

0

1

0

1

0

2

0

0

1

: | , | , |〉 →














〉 →














〉 →














(39)

B

q

q00

2

00
1

3

1

1

1

01
1

3 1

02: | , | , |〉 →














〉 →
















〉 →














1

3 1

2

q

q (40)

B

q

q q01
210

1

3 1

11
1

3

1

1

12: | , | , |〉 →














〉 →














〉 →
















1

3
1

1

2q

(41)

B

q

q

q

02

2

220
1

3 1

21
1

3
1

1

2: | , | , |〉 →
















〉 →














2
1

3

1

1

〉 →














q . (42)
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The Case d = 4

This case corresponds to a spin j = 3/2. Here, we have q = i and a, α ∈
{0, 1, 2, 3}. Equation (17) can be applied to this case too. However, the re-
sulting bases B4, B00, B01, B02 and B03 do not constitute a complete system of
mutually unbiased bases (d = 4 is not a prime number). Nevertheless, it is
possible to find d + 1 = 5 mutually unbiased bases because d = 22 is the
power of a prime number. This can be achieved by replacing the space ε(4)
spanned by {|3/2,m〉 : m = 3/2, 1/2, –1/2, –3/2} by the tensor product space
ε(2) ⊗ ε (2) spanned by the basis

{ , , , }α α α β β α β β⊗ ⊗ ⊗ ⊗ . (43)

The space ε(2) ⊗ ε (2) is associated with the coupling of two spin angular
momenta j1 = 1/2 and j2 = 1/2 or two qubits (in the vector u ⊗ v, u and v
correspond to j1 and j2, respectively). An alternative basis for ε(2) ⊗ ε (2) is

{ , ( ), ( )}α α α β β α β β, α β − β α⊗ ⊗ + ⊗ ⊗ ⊗ ⊗1
2

1
2

. (44)

The vectors in (44) are well known in the treatment of spin systems. The
first three vectors are symmetric under the interchange 1 ↔ 2 and describe
a total angular momentum J = 1 while the last one is antisymmetric and
corresponds to J = 0. It should be observed that the basis (44) illustrates
a connection between the special unitary group SU(2) and the permutation
group S2 (a particular case of a reciprocity theorem between irreducible rep-
resentation classes of SUn and Sm).

In addition to the bases (43) and (44), it is possible to find other bases of
ε(2) ⊗ ε (2) which are mutually unbiased. The d = 4 mutually unbiased
bases, besides the canonical or computational basis (43), can be constructed
from the eigenvectors

| | |ab a bαβ α β〉 = 〉 ⊗ 〉 (45)

of the operators wab = v0a ⊗ v0b (the vectors |aα〉 and |bβ〉 refer to the two
spaces ε(2)). As a result, we have the d + 1 = 5 following mutually unbiased
bases where λ = (1 – i)/2 and µ = (1 + i)/2.

The canonical basis:

α α α β β α β β⊗ ⊗ ⊗ ⊗, , , (46)
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or in column vectors

1

0

0

0

0

1

0

0

0

0

1

0























































, , , .

0

0

0

1



















(47)

The w00 basis:

| ( )0000
1
2

〉 = ⊗ + ⊗ ⊗ ⊗α α α β + β α + β β (48)

| ( )0001
1
2

〉 = ⊗ − ⊗ ⊗ ⊗α α α β + β α − β β (49)

| ( )0010
1
2

〉 = ⊗ + ⊗ − ⊗ ⊗α α α β β α − β β (50)

| ( )0011
1
2

〉 = ⊗ − ⊗ ⊗ ⊗α α α β − β α + β β (51)

or in column vectors

1
2

1

1

1

1

1
2

1

1

1

1

1
2

1

1

1

1



















−

−



















−





, ,

–















−
−



















, .
1
2

1

1

1

1

(52)

The w11 basis:

| ( )1100
1
2

〉 = ⊗ + ⊗ ⊗ ⊗α α α β + β α − β βi i (53)

| ( )1101
1
2

〉 = ⊗ − ⊗ ⊗ ⊗α α α β + β α + β βi i (54)

| ( )1110
1
2

〉 = ⊗ + ⊗ − ⊗ ⊗α α α β β α + β βi i (55)

| ( )1111
1
2

〉 = ⊗ − ⊗ ⊗ ⊗α α α β − β α − β βi i (56)
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or in column vectors

1
2

1

1

1
2

1

1

1
2

1

1

i

i

i

i

i

i

−



















−


















−






, , 













−
−
−



















, .
1
2

1

1

i

i
(57)

The w01 basis:

λ µ α α α β β α + β β| | ( )0100 0111
1
2

〉 + 〉 = ⊗ + ⊗ − ⊗ ⊗i i (58)

µ λ α α − α β + β α + β β| | ( )0100 0111
1
2

〉 + 〉 = ⊗ ⊗ ⊗ ⊗i i (59)

λ µ α α α β β α − β β| | ( )0101 0110
1
2

〉 + 〉 = ⊗ − ⊗ − ⊗ ⊗i i (60)

µ λ α α α β + β α − β β| | ( )0101 0110
1
2

〉 + 〉 = ⊗ + ⊗ ⊗ ⊗i i (61)

or in column vectors

1
2

1

1
2

1

1
2

1

1

–i

i

1

i

i

–1

i

i



















−


















−
−



, ,















 −



















, .
1
2

1

1

i

i

(62)

The w10 basis:

λ µ α α α β + β α + β β| | ( )1000 1011
1
2

〉 + 〉 = ⊗ − ⊗ ⊗ ⊗i i (63)

µ λ α α α β − β α + β β| | ( )1000 1011
1
2

〉 + 〉 = ⊗ + ⊗ ⊗ ⊗i i (64)

λ µ α α α β β α β β| | ( )1001 1010
1
2

〉 + 〉 = ⊗ + ⊗ + ⊗ − ⊗i i (65)

µ λ α α − α β − β α − β β| | ( )1001 1010
1
2

〉 + 〉 = ⊗ ⊗ ⊗ ⊗i i (66)
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or in column vectors

1
2

1

1
2

1

1
2

1

1

–i

1

i

i

–1

i

i

i



































 −






, , 











 −



















, .
1
2

1

–i

–1

i

(67)

It is to be noted that the vectors of the w00 and w11 bases are not intricated
(i.e., each vector is the direct product of two vectors) while the vectors of
the w01 and w10 bases are intricated (i.e., each vector is not the direct prod-
uct of two vectors).

4. GENERALIZED PAULI MATRICES

From the operators v0a, it is possible to define two basic operators x and z
which can be used for generating generalized Pauli matrices. Let us put

x v z v v= =00 00 00, † . (68)

The action of x and z on the space ε(2j + 1) is given by

x j m j m j j x k km j m j| , ( ) | , | ,– | |, ,〉 = − + 〉 + 〉 ⇔ 〉 = − 〉1 1 1δ δ (69)

and

z j m q j m z k q kj m k| , | , | |〉 = 〉 ⇔ 〉 = 〉− (70)

where q = exp(2πi/d) with d = 2j + 1. The d-dimensional matrices X and Z of
x and z are

X Z=





















=

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

1 0 0 0

0

L

L

M M M L M

L

L

L

,
q

q

q d

0 0

0 0 0

0 0 0

2

1

L

L

M M M L M

L −





















. (71)
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The operators x and z are unitary and satisfy the q-commutation relation

xz qzx− = 0 . (72)

Pairs of operators satisfying a relation of type (72) are nowadays referred to
as Weyl pairs. Thus, the operators x and z constitute a Weyl pair. Weyl pairs
were introduced at the beginning of quantum mechanics15. They were ex-
tensively used for factorizing the secular equation in connection with a
study of alternating hydrocarbons16 and for constructing analogues of the
usual Pauli matrices14,17–19.

Let us now define the operators

u x z a b dab
a b= = −, , , , ... ,0 1 1 . (73)

The d2 operators uab are unitary and satisfy the following trace relation

Tr ε δ δ( )
†

, ,( ) ( )2 1 2 1j ab a b a a b bu u j+ ′ ′ ′ ′= + (74)

where the trace is taken on the d-dimensional space ε(2j + 1). Additionally,
the commutator [uab, ua′b′]– and the anticommutator [uab, ua′b′]+ of uab and ua′b′
are given by

[uab, ua′b′]m = ( ) , , .q q u a a a b b bba ab
a b

− ′ − ′
′′ ′′ ′′ = + ′ ′′ = + ′m (75)

Consequently, [uab, ua′b′]– = 0 if and only if ab′ – ba′ = 0 (mod d) and [uab, ua′b′]+ =
0 if and only if ab′ – ba′ = (1/2)d (mod d). Therefore, all anticommutators
[uab, ua′b′]+ are different from 0 if d is an odd integer.

Two consequences follow from Eqs (74) and (75). First, the trace relation
(74) shows that the d2 operators uab are pairwise orthogonal operators so
that they can serve as a basis for developing any operator acting on the
Hilbert space ε(d). Second, the commutation relation (75) shows that the
set {uab: a, b = 0, 1, ..., d – 1} generates a d2-dimensional Lie algebra. This al-
gebra turns out to be the Lie algebra of the unitary group U(d). The subset
{uab}: a, b = 0, 1, ..., d –1}\{u00} thus spans the Lie algebra of the special uni-
tary group SU(d).

All this is reminiscent of the group SU(2), the generators of which are the
well-known Pauli matrices. Therefore, the operators uab shall be referred to
generalized Pauli operators and their matrices as generalized Pauli matrices.
As an illustration, let us deal with the cases d = 2 and 3.
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Example 1

In the case j = 1/2 ⇔ d = 2 (⇒ q = –1), the matrices of the 4 operators uab
with a, b = 0, 1 are

I X Z X X Z= = 





= = 





0 0 1 01 0

0 1

0 1

1 0
, (76)

Z X Z Y X Z= =
−







= =
−





0 1 1 11 0

0 1

0 1

1 0
, . (77)

In terms of the usual (hermitian and unitary) Pauli matrices σx, σy and σz,
we have X = σx, Y = –iσy, Z = σz. The approach developed in the present pa-
per leads to Pauli matrices in dimension 2 that differ from the usual Pauli
matrices. This is the price one has to pay in order to get a systematic gener-
alization of Pauli matrices in arbitrary dimension. It should be observed
that the commutation and anticommutation relations given by (75) with
d = 2 correspond to the well-known commutation and anticommutation
relations for the usual Pauli matrices (transcribed in the normalization
X1Z0 = σx, X1Z1 = –iσy, X0Z1 = σz).

Example 2

In the case j = 1 ⇔ d = 3 (⇒ q = exp(2πi/3)), the matrices of the 9 operators
uab with a, b = 0, 1, 2, viz.,

X Z I X Z X X Z X X Z Z X Z Z0 0 1 0 2 0 2 0 1 0 2 2= = = = = (78)

X Z XZ X Z X Z X Z X Z XZ1 1 2 2 2 1 2 1 2 2= = = (79)

are

I X X=














=














=
1 0 0

0 1 0

0 0 1

0 1 0

0 0 1

1 0 0

0 0 1
2, , 1 0 0

0 1 0















(80)
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Z q

q

Z q

q

XZ=














=














=
1 0 0

0 0

0 0

1 0 0

0 0

0 02

2 2, ,

0 0

0 0

1 0 0

2

q

q














(81)

X Z

q

q

X Z

q

q

2 2

2

2

20 0

1 0 0

0 0

0 0

1 0 0

0 0

=














=
















, , XZ

q

q2

20 0

0 0

1 0 0

=
















. (82)

These generalized Pauli matrices differ from the Gell–Mann matrices20 used
in elementary particle physics. They constitute a natural extension of the
Pauli matrices in dimension d = 3.

5. CONCLUDING REMARKS

The various bases described in the present paper are of central importance
in quantum information and quantum computation. They also play an im-
portant role for quantum (chemical and physical) systems with cyclic sym-
metry. By way of illustration, we would like to mention two examples.

Let us consider a ring shape molecule with N atoms (or aggregates) at the
vertices of a regular polygon with N sides (N = 6 for the benzene molecule
C6H6). The atoms are labelled by the integer n with n = 0, 1, ..., N – 1.
Hence, the cyclic character of the ring shape molecule makes it possible to
identify the atom with the number n to the one with the number n + kN
where k ∈ � (the location of an atom is defined modulo N). Let |ϕn〉 be the
atomic state vector, or atomic orbital in quantum chemistry parlance, de-
scribing a π-electron located in the neighboring of site n. From symmetry
considerations, the molecular state vector, or molecular orbital, for the
molecule reads21

| |/κ ϕπ
s

ns N
n

n

N

N
〉 = 〉

=

−

∑1 2

0

1

e i , (83)

with s = 0, 1, ..., N – 1. As a result, the molecular orbital |κs〉 assumes the
same form, up to a global phase factor, as the state |aα〉 given by Eq. (17)
with a = 0 and α = s.

A similar result can be obtained for a one-dimensional chain of N
1/2-spins (numbered with n = 0, 1, ..., N – 1) used as a modeling tool of a
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ferromagnetic substance. Here again, we have a cyclic symmetry since the
spins numbered n = N and n = 0 are considered to be identical. The spin
waves can then be described by state vectors21 very similar to the ones
given by Eq. (17) again with a = 0.

We close this work with two remarks of a group-theoretical nature, one
concerning a continuous group, the other a finite group, connected with
the operators uab .

First, as mentioned in Section 4, the set {uab: a, b = 0, 1, ..., d – 1}\{u00}
constitutes a basis for the Lie algebra SU(d). Such a basis differs from the
well-known Cartan basis or from the Gelfand–Tsetlin basis. In the special
case d = p, with p prime integer, the basis {uab: a, b = 0, 1, ..., d – 1}\{u00} can
be partioned into p + 1 disjoint subsets, each subset containing p – 1 com-
muting operators18,22. In other words, it is possible to decompose the Lie al-
gebra of SU(p) into p + 1 Cartan subalgebras of dimension p – 1. It can be
proved that each subalgebra is associated with a basis of ε(p) and that the
set of the p + 1 corresponding bases is a complete set of mutually unbiased
bases. A similar decomposition holds for SU(d) in the case where d = pe,
with p prime integer and e positive integer22. However, in this case we need
to replace ε(d) by ε(p)⊗ e.

A second group-theoretical remark concerns a finite group known as the
Pauli group or the finite Heisenberg–Weyl group17,18,22–24. The set {uab: a, b =
0, 1, ..., d – 1} is not closed under multiplication. However, it is possible to
extend the latter set in order to have a group. For this purpose, let us define
the operators wabc via22

w q u a b c dabc
a

bc= = −, , , , , ... ,0 1 1 . (84)

Then, the set {wabc: a, b = 0, 1, ..., d – 1}, endowed with the multiplication of
operators, is a group of order d3. This group (the Pauli group) is of paramount
importance in quantum information and quantum computation24,25.
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